Question Number	Acceptable Answers	Mark
	$\begin{array}{c} \overset{H_{3}C}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset$	Mark 3
	 arrow from bromide ion can start anywhere on the Br or from the minus sign or the lone pair (if shown) on Br⁻ and can go to the C or the + sign on the intermediate 3rd mark available even if an incorrect intermediate has been drawn 	

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	$ \begin{array}{c c} H_{3}C & H \\ H_{3}C & H \\ H & H \end{array} $		1
	$CH_3 CH_2 CH_2^+$		

Question Number	Acceptable Answers	Reject	Mark
1(b)(i)	B /CH ₃ CH ₂ CH(OH)CH ₃ /butan-2-ol (1) Because the C atom bearing the OH is attached to two other C atoms / C with OH group attached to one H (atom) (1) <i>ALLOW</i> Because the C atom bearing the OH is attached to two alkyl groups	Just "OH is on the second C atom" / "OH is in the chain, not on the end" OR "OH attached to two methyl / two CH ₃ groups"	2
	These marks are stand alone	OH ⁻ (instead of -OH	

Acceptable Answers	Reject	Mark
C /(CH ₃) ₃ COH /(2-)methylpropan-2-ol (1)		2
Because it is a tertiary (alcohol)/no C-H bonds to break (1)	"tertiary structure" /	
ACCEPT a description of a tertiary alcohol	carbon" /	
These marks are stand alone	carbocation"	
	C /(CH ₃) ₃ COH /(2-)methylpropan-2-ol (1) Because it is a tertiary (alcohol)/no C-H bonds to break (1) ACCEPT a description of a tertiary alcohol	C /(CH ₃) ₃ COH /(2-)methylpropan-2-ol (1) Because it is a tertiary (alcohol)/no C-H bonds to break (1) ACCEPT a description of a tertiary alcohol

Question Number	Acceptable Answers	Reject	Mark
1(b)(iii)	вотн		1
	B / CH ₃ CH ₂ CH(OH)CH ₃ / butan-2-ol		
	AND		
	H H O H $H - C - C - C - C - H$ $H - H H H$ $H H H$ BOTH required for the one mark	Structural / skeletal formula	

Question Number	Acceptable Answers	Reject	Mark
1(b)(iv)	A / CH ₃ CH ₂ CH ₂ CH ₂ OH / butan-1-ol and D / CH ₃ CH(CH ₃)CH ₂ OH / (2-)methylpropan-1-ol BOTH needed for one mark		1

Question Number	Acceptable Answers	Reject	Mark
1(b)(v)	Steamy fumes / misty fumes / white mist	White smoke	1

Question Number	Acceptable Answers	Reject	Mark
1(b)(vi)	$(C_4H_9OH + PCI_5 \rightarrow) C_4H_9CI + POCI_3 + HCI$		2
	(1) for HCI(1) for rest of the equation correct		
	<i>NOTE:</i> Equation must be completely correct for the second mark.		
	ACCEPT "PCI ₃ O" instead of POCI ₃		

Question Number	Acceptable Answers	Reject	Mark
2 (a)	$C_{10}H_{22} \rightarrow C_7H_{16} + C_3H_6$ <i>ALLOW</i> structural or displayed formulae instead of molecular formulae <i>IGNORE</i> any state symbols, even if incorrect		1

Question Number	Acceptable Answers	Reject	Mark
2 (b) (i)	e.		4
	First Mark: <i>EITHER</i> Diagram shows overlap of any-shaped orbitals along the line between the two nuclei <i>OR</i> Mentions/implies rotation around a sigma/single bond (1)	Just a line between the two nuclei	
	Second Mark: Any written mention, or clear evidence from the diagram (e.g. shading), of the resultant (high) electron density (along the line) between the two nuclei (1) diagram for the π -bond		
	e. EITHER		
	OR		
	Third Mark: <i>EITHER</i> Diagram shows two dumb-bell shaped (p-) orbitals(these can be separate dumb-bells or the diagram can show the p-orbitals overlapping sideways) <i>OR</i> Restricted /lack of /no rotation about a pi/double bond	Just curved lines above and below the two nuclei	
	(1) Fourth Mark: Any written mention, or clear evidence from the diagram (e.g. shading), of the resultant (high) electron density above and below (the line between) the two nuclei (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (b) (ii)	Electrophilic addition		1
	BOTH words needed		
	ALLOW "heterolytic" before electrophilic addition		

Question	Accontable Answers		Dojoct	Mark
	Acceptable Answers		Reject	IVIAI K
Number				
2 (b) (iii)	π bond weaker than σ (bond) / less energy needed to break π bond			2
	ALLOW π bond weak(er) / π bond easy to break	(1)		
	π - electrons / π bonds (more) accessible (to electrophilic attack)			
	ALLOW high/higher/more electron density in π bond (so alkenes more susceptible to electrophilic attack)			
		(1)		
	Mark the two points independently			

Question	Acceptable Answers	Reject	Mark
Number			
2 (c) (i)	$\begin{vmatrix} H & Br & H & H & H & H \\ & & & & & & \\ H - C - C - C - C - C - H & H - C - C - C - Br \\ & & & & \\ H & H & H & and & H & H & H \end{vmatrix}$	CH₃ not fully displayed	2
	(main product)		
	both DISPLAYED structures, with ALL bonds and atoms shown		
	(1)		
	major product identified or shown as product in (c)(ii) if NOT identified in (c)(i) (1)	Incorrect name of isomer for 2nd mark	
	NOTE : if only one isomer of C_3H_7Br is named, assume this is the required "labelling" of the major product		
	Mark the two points independently		

2 (c) (ii) $ \begin{array}{c} H_{3C} H \\ H_{-C} \\$	Question Number	Acceptable Answers	Reject	Mark
1st mark: Curly arrows must start from the bonds NOT the atomshalf arrow- heads3rd mark: Bromide ion must clearly have a 1 ⁻ charge to get this markBrNOTE: The arrow from the bromide ion can start from anywhere on the Br ⁻ ion (including the minus sign) or from a lone pair on Br ⁻ if shownBrCurly arrow can go to the C or the + sign on the intermediate 		H H H H H H H H H H H H H H	arrow- heads	3

Question Number	Acceptable Answers		Reject	Mark
2 (c) (iii)	Secondary carbocation (named or described o drawn)	r (1)	Answers just in terms of Markownikoff's rule	2
	more stable (than primary)	(1)		
	Mark the two points independently			
	NOTE : Zero awarded if primary carbocation thought to be more stable			

Question Ac Number	cceptable Answers	Reject	Mark
(m sic Cc sh A <i>L</i> Cc br Ur	$ \begin{array}{c} & H \\ H$	"x" instead of "n"	3

Question Number	Acceptable Answers	Reject	Mark
2 (d) (ii)	(Advantage): polypropene will decompose (naturally)	"Can be recycled" (0) for first scoring point	2
	ALLOW "rot" or "break down"		
	OR	Biodegradable for 1 st mark	
	polypropene will not require landfill (as it can decompose in sunlight)		
	OR		
	no need to incinerate /burn		
	IGNORE "good for environment" / "no pollution" (1)		
	(Disadvantage): poly(propene) cannot be used when exposed to (bright) sunlight / UV / outdoors	Answers which do not imply exposure to UV/sunlight	
	OR		
	cannot be recycled / cannot be reused (1)	Biodegradable for 2 nd mark	
	Mark the two points independently		

Question Number	Acceptable Answers	Reject	Mark
3(a)	(C _n H _{2n} could be a) ring / cyclic (compound) ALLOW identification of any specific cyclic compound (e.g. cyclohexane) IGNORE any reference to "fewer hydrogen atoms"		1

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	→ H ₂ →		1
	All must be correct for the mark		

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	+ HBr		2
	First mark:- An equation with the reactants shown correctly and EITHER 2-bromopropane OR 1-bromopropane shown as the product		
	NOTE: The C-Br bond MUST be shown in the skeletal formula for the first mark (1)		
	Second mark (stand alone, even if no equation attempted or left-hand side of equation incorrect):-		
	Correct skeletal formula of 2-bromopropane (1)		
	Penalise lack of skeletal formulae once only in (b)(i) and (b)(ii) when taken together		

Question Number	Acceptable Answers	Reject	Mark
3(c)	H ₃ C H ₄ C H H H H H H H H H H H H H H C H H H H H		3
	First mark: Curly arrow from C=C to H (in H-Br) AND curly arrow from bond in H-Br to the Br IGNORE polarity of HBr even if incorrect (1)	Full + and - charges on HBr	
	Second mark: Structure of correct secondary carbocation (1)	Extra / spare bond dangling from the C+ carbon	
	Third mark: Curly arrow from anywhere on the bromide ion towards the C+ on the carbocation		
	NOTE: The bromide ion must have a full negative charge, but the lone pair of electrons on the Br ⁻ NEED NOT be shown	δ [−] on bromide ion instead	
	NOTE: A correct mechanism leading to the formation of 1-bromopropane scores the first and third marks only (so max (2))	of Br ⁻	
	Skeletal formulae can be used		

If but-2-ene is the starting alkene, only 3 rd mark can be awarded
If but-1-ene is the starting alkene, 2 nd and 3 rd marks can be awarded
If single-headed arrows used throughout but all else correct, then max (2) can be awarded for mechanism

Question Number	Acceptable Answers	Reject	Mark
4(a)	Allow formulae throughout instead of names	Smokiness of flame	2
	Test : add bromine (water) /bromine solution ALLOW bromine gas /bromination (1) Result: no change with hexane / stays orange brown/ stays red brown/ stays yellow and	Bromide Iodine	
	goes colourless with hex-1-ene(1) 2 nd mark cq on 1st	Goes clear	
	OR Test: add (acidified) potassium manganate((VII)) (solution) (1) ALLOW potassium permanganate for potassium manganate(VII) Result: no change with hexane/stays purple and goes colourless / brown with hex-1-ene (1)		
	OR Test: add alkaline potassium manganate((VII)) (solution) (1) ALLOW potassium permanganate for potassium manganate(VII) Result: no change with hexane/stays purple and goes green with hex-1-ene (1)		

Question Number	Acceptable Answers	Reject	Mark
4(b)(i)	CH_3 H $C=C$ C_3H_7 ALLOW Partially or fully displayed as long as the two H are trans Allow bonds which go closer to the H than to C of alkyl groups on l.h.s.		1

Question Number	Acceptable Answers	Reject	Mark
4(b)(ii)	QWC C=C restricts rotation/ C=C prevents twisting /C=C can't rotate/ lack of free rotation round C=C (so the groups can't change position relative to the bond) (1) Hex-2-ene has different groups on the C at each end of C=C / hex-1-ene has 2 hydrogens on the C at one end of C=C / hex-1-ene doesn't have different groups on the C at one end of C=C / hex-1-ene has no group which takes priority on the C at one end of C=C (1) (answer can be considered from either hex -1- ene or hex-2-ene)	Alkenes can't rotate Double bond is fixed Bonds can't rotate Double bond is on first carbon (unless further explanation)	2

Question Number	Acceptable Answers	Reject	Mark
4(c)(i)	ignore signs (50 x 46 x 4.18) = 9614(J)/ 9.614 kJ (if converted to kJ units must be stated) ALLOW 9610 / 9600 /9.61 kJ /9.6 kJ	(50.32 x 46 x 4.18) = 9676(J)	1

4(c)(ii) One mark each for moles of hexane energy change 3	Question Number	Acceptable Answers	Reject	Mark
sign, units, 2 sig figs (for energy change calculated) Moles hexane = 0.32/86 = (3.72 x 10 ⁻³) (1) (9614/ 3.72 x 10 ⁻³) = 2584000 J/ 2584 kJ (1) ΔH = -2600 kJ mol ⁻¹ /-2 600 000 J mol ⁻¹ / -2.6x10 ⁶ J mol ⁻¹ (1) Allow TE: 0.32g in (i) (gives 61.53J), ΔH = -17 kJ mol ⁻¹ /-17 000 J mol ⁻¹ /-1.7x10 ⁴ J mol ⁻¹ 50.32g in (i) (gives 9676J) ΔH = -2600 kJ mol ⁻¹ /-2 600 000 J mol ⁻¹ /-2.6x10 ⁶ J mol ⁻¹ Rounding of moles to 4x10⁻³ gives -2400 kJ mol ⁻¹ or-15 kJ mol ⁻¹ max 2 (loses moles mark) Answer alone (3) Max 2 if negative sign missing and/or more than 2 sf or error in units		moles of hexane energy change sign, units, 2 sig figs (for energy change calculated) Moles hexane = $0.32/86 = (3.72 \times 10^{-3})$ (1) (9614/ 3.72 x 10 ⁻³) = 2584000 J/ 2584 kJ (1) $\Delta H = -2600 \text{ kJ mol}^{-1}$ /-2 600 000 J mol ⁻¹ / -2.6x10 ⁶ J mol ⁻¹ (1) Allow TE: $0.32g$ in (i) (gives 61.53J), $\Delta H = -17$ kJ mol ⁻¹ /-17 000 J mol ⁻¹ /-1.7x10 ⁴ J mol ⁻¹ 50.32g in (i) (gives 9676J) $\Delta H = -2600$ kJ mol ⁻¹ /-2 600 000 J mol ⁻¹ /-2.6x10 ⁶ J mol ⁻¹ Rounding of moles to 4x10 ⁻³ gives -2400 kJ mol ⁻¹ or-15 kJ mol ⁻¹ max 2 (loses moles mark) Answer alone (3) Max 2 if negative sign missing and/or more than		3

Question Number	Acceptable Answers	Reject	Mark
4(c)(iii)	 Any 2 from: Heat losses (from calorimeter)/ poor insulation Incomplete combustion/burning Incomplete transfer of heat/ loss by convection Evaporation of fuel (after weighing) Heat capacity of calorimeter (not included)/ heat absorbed by calorimeter Measurements not carried out under standard conditions /H₂O is gas, not liquid, in this experiment 	Just "energy losses" Not all hexane burns Data books give average values Hexane is impure Human error	2

Question Number	Acceptable Answers	Reject	Mark
4(c)iv)	Error in reading temperature is less than the effect of ignoring heat loss etc ALLOW Other errors are greater than error in temperature reading / Readings are within margins of error/ The accuracy with the thermometer is not significantly different from other measurement errors / 0.1°C is insignificant compared to temperature change / Using 0.1°C thermometer does not change significant figures in final answer / Using 0.1°C thermometer does not reduce errors	Using 0.1°C thermometer gives a more precise reading but does not improve accuracy	1

Question Number	Acceptable Answers	Reject	Mark
4(d)(i)	Nickel / Ni Finely divided nickel/ Raney nickel ALLOW Platinum /Pt Palladium/ Pd Rhodium/ Rh Accept one of the above answers combined with a comment such as "at high temperature", "heat also needed", "under pressure", "lumps of", "powdered" Accept combinations of above answers eg Pt and Pd	Zeolite Carbon Hydrogen Uv light	1

Question Number	Acceptable Answers	Reject	Mark
4(d)(ii)	Left hand arrow, pointing down, labelled ΔH_c hex-1-ene + ΔH_c hydrogen/ -4003-286/-4289 OR Pointing up with signs given above reversed (1)Right hand arrow pointing down labelled ΔH_c 		3
	reversed $\Delta H_{\text{reaction}} = +126$ Max (1)		
Question Number	Acceptable Answers	Reject	Mark
4(d)(iii)	Same (number and type of) bonds are broken and made in each reaction / one C=C (and one H-H) are broken and two C-H made	All are alkenes going to alkanes	1
	ALLOW	all have the same	

ALLOW reaction is -CH=CH- + $H_2 \rightarrow$ -CH ₂ -CH ₂ - each time	all have the same double bond which reacts in the same	
(Similar energy change) as in each case $\rm H_2$ reacts with C=C	way	

4(a)(i) Reagent: chlorine / Cl ₂ (1) Cl 2 Condition: uv / sunlight (1) Just "heat" 2 ALLOW light Mark independently 2 Ignore reference to temp and pressure if given 2	Question Number	Acceptable Answers	Reject	Mark
with uv light. If answers reversed/both on one line 1 out of 2	4(a)(i)	Condition: uv/ sunlight (1) ALLOW light Mark independently Ignore reference to temp and pressure if given with uv light.	Cl Just "heat"	2

Question	Acceptable Answers	Reject	Mark
Number			
4(a)(ii)	(free) radical (1)		2
	Substitution (1)		
	Mark independently		